

AC156 Seismic Qualification Testing of

Supertorque 8ZR Genset Starting Systems

Qualification Level: $S_{DS} = 2.00g$, z/h = 1.0 $S_{DS} = 2.50g$, z/h = 0.0

Report Prepared For: SENS

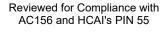
Testing Conducted at: Dynamic Certification Labs, 1315 Greg Street, Suite 109 Sparks, NV 89431

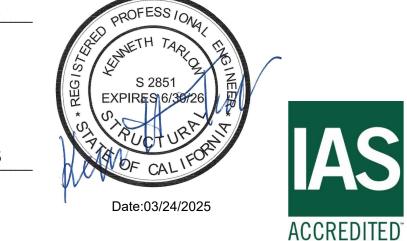
Shake Table Test Date: 3/12/25 Report Date: 3/20/25 Tested Equipment Manufactured and Provided by: SENS

Prepared By:

Nastya Veyngerova **Seismic Test Engineer**

Reviewed By:


Rachel Wolfe Seismic Test Engineer


3/20/25

Date

3/20/25

Date

This test report shall not be reproduced except in full, without the written approval of the laboratory. The results herein relate only to the items received and tested for Project No. 08826-2401.

DCL Doc. R.1, Rev 5

Report # DCL-08826-2401-AC156-Rev0

Testing Laboratory

Disclaimer

Any opinions, findings, conclusions, or recommendations implied or expressed in this publication are those of the author and do not necessarily reflect the views of the sponsor or of the test laboratory. The test results are only applicable to the products received and tested. DCL has correlated the test materials with the product specifications.

Statement of Conformity

Tests and test reports are issued in compliance with the relevant test standard referenced herein. Dynamic Certification Laboratories, LLC (DCL) utilizes a simple decision rule and does not include measurement uncertainty in any statement of compliance unless requested by the customer. For testing and reporting under DCL's scope of accreditation, applicable instrumentation has been calibrated to the current ISO/IEC 17025 standard by an accredited calibration laboratory and found within tolerance.

Table of Contents

Disclaimer	2
Statement of Conformity	2
Table of Contents	3
Report Revision Log	5
Key Information	6
1 Introduction	7
1.1 UUT General Description	7
1.2 UUT Dimensions and Weight	7
2 UUT Subcomponents	9
3 Seismic Parameters and Derived Required Response Spectra	9
4 Seismic Certification Test Procedure	9
4.1 Pre-Test Inspection	9
4.2 Pre-Test Functional Compliance Verification	9
4.3 Seismic Simulation Test Setup1	1
4.3.1 Triaxial Testing Requirements1	1
4.3.2 Weighing1	1
4.3.3 Mounting1	1
4.3.4 Interface Connections1	1
4.3.5 Monitoring1	2
4.4 Resonance Frequency Search1	2
4.5 Multi-frequency Seismic Simulation Tests1	2
4.6 Post-Test Inspection1	3
4.7 Post-Test Functional Compliance Verification1	3
5 Testing Facility1	3
5.1 Test Facility Location1	3
5.2 List of Observers Present for Functionality Testing1	3
6 Testing Equipment Description1	3
6.1 Shake Table1	3
6.2 Test Coordinate System1	3
6.3 Instrumentation1	5
7 Results of Test Data1	6

SEN Sup	NS ertorqu	3/21/2025 Report 08826-2401						
•	ke Test	Lab Report	Rev 0					
7.	.1 R	esults of Pre- and Post-Test Structural Integrity and Functionality	Requirements16					
	7.1.1	Pre-Test	16					
	7.1.2	Post-Test	16					
	7.1.3	Design Changes	16					
	7.1.4	7.1.4 Resonance Search Results						
8	Shake	Table Output Signal for Seismic Certification	16					
8.1 Obtained Signal Strength								
	8.2 Coherence of Input Motions							
9	Test R	esults and Conclusions	17					
10	Refe	erences	18					
Арр	endix A	Unit Drawings and Mounting Details	19					
Арр	endix B	Listing of Subcomponents or Bill of Materials	22					
Арр	endix C	Photographs of Units Under Test	23					
Арр								
Арр	endix E	Seismic Simulation Test Response Spectra and Time Histo	ry Plots31					
Арр	endix F	Coherence Plots	40					
Арр	endix G	Testing Laboratory Certificate of Accreditation	42					
End	of Rep	ort	44					

Revision	Description of Change	Author	Effective Date
00	Initial Release	Nastya Veyngerova	3/20/25

Key Information

Unit Description	Supertorque 8ZR Genset Starting Systems
Unit Designation	UUT-01, UUT-02, UUT-03
Test Sponsor and Contact Information	Don Nohavec, Director, R&D Programs SENS, Longmont, Co Phone: 970-988-4005 Email: don.nohavec@sens-usa.com
Data Acquisition and Contact Information	Nastya Veyngerova, Seismic Test Engineer DCL, Sparks, Nevada Phone: 775-358-5085 Email: nastya.veyngerova@Shaketest.com
Test Laboratory and Contact Information	Josh Sailer, Lab Manager DCL, Sparks, Nevada Phone: 775-358-5085 Email: josh@Shaketest.com
Test Date	3/12/25
UUT Support	Rigid Base Mount
Test Level	S _{DS} = 2.00g at z/h = 1.0 S _{DS} = 2.50g at z/h = 0.0
Unit Installation	At grade to roof level installation
Compliance Status	UUT-01, UUT-02 and UUT-03 Comply with AC156

Table 1: Key UUT, test, and contact information for seismic certification tests.

1 Introduction

The purpose of the testing was to verify attachment methods as well as unit performance and functionality of Supertorque 8ZR genset starting systems to the ICC-ES standard "AC156 Acceptance Criteria for Seismic Qualification by Shake-Table Testing of Nonstructural Components and Systems." AC156 criteria were followed which require the Unit Under Test (UUT) design to ensure that the anchored UUT* does not leave its mounting and cause damage to other building components or injury to occupants during the seismic event and that the structural integrity of the equipment attachment system is maintained. In addition, other functionality requirements were observed and recorded.

* This only applies for the anchors that were used to mount the units to the structure during testing. If other anchors are used, they are outside the scope of this test and must be independently qualified for the applicable loads.

1.1 UUT General Description

The UUTs are summarized in Tables 2 and 3. The test samples were provided by SENS. An overall pre-test photograph of each UUT is provided in Figures 1, 2 and 3. Drawings of each UUT are provided in Appendix A.

UUT	Component	Model	UUT Support	Outline Drawing					
UUT-01		8R-A1-LA-331-00A-1		Appendix A Figure A.1					
UUT-02	Genset Starting System	8R-A1-LA-4B2-C0A-1	Rigid Base Mount	Appendix A Figure A.2					
UUT-02		8R-C1-0A-111-00A-1		Appendix A Figure A.3					

Table 2. General description of UUTs.

1.2 UUT Dimensions and Weight

Table 3. UUT dimensions and weights.*

UUT		Measured Weight					
001	Length	Width	Height	[lb.]			
UUT-01	32.5	13.5	75.0	520			
UUT-02	61.0	13.5	64.8	730			
UUT-03	32.5	13.5	17.5	111			

*Listed dimensions include hardware

Figure 1. Photograph of UUT-01.

Figure 2. Photograph of UUT-02.

Figure 3. Photograph of UUT-03.

2 UUT Subcomponents

For a custom product line, where subcomponents in each assembled product can potentially be different, all qualified subcomponents along with their dimensions and weights shall be listed. Since the test units are part of a custom product line, major subcomponents are listed in Appendix B.

3 Seismic Parameters and Derived Required Response Spectra

The seismic certification of the units was performed by means of an earthquake simulator (shake table) testing. A special three-component time history was generated to comply with ICC-ES AC156.

The seismic test parameters and derived Required Response Spectra (RRS) levels for each UUT are provided in Table 4.

Building	Test	Sds (g) z/h		Horiz Accelera		Vertical Acceleration (g)		
Code	Criteria	Sus (g) 2/1	2/11	Aflx-H	Arig-H	Aflx-V	Arig-V	
CBC 2022	ICC-ES AC156	2.00	1.0	3.20	2.40	N/A	N/A	
		2.50	0.0	N/A	N/A	1.67	0.67	

 Table 4. Shake table test parameters.

4 Seismic Certification Test Procedure

4.1 **Pre-Test Inspection**

An inspection was performed at the test laboratory upon receipt of each UUT. Each UUT was visually inspected for physical damage to verify that no damage had occurred during shipping and handling.

4.2 **Pre-Test Functional Compliance Verification**

Functionality requirements and tests were performed at the test laboratory by the designated SENS technical representative, as outlined in Figures 4, 5 and 6. It was determined that the listed components were working, power was being transmitted to the energized components, and the units were serving their intended function.

	Fu	Inctio	nal Checklist			((=))	DCL		
Project Number:		08826-2401 P		Project Nam	e: SENS 8Z (SENS 8Z OSP			
ι	UUT: UUT-01		Model:	8R-A1-LA-331	LA-331-00A-1				
Pre-Shake Date & Time: 8:2201		8:0	2am 3/12/25	Post-Shake Date & Time	0.01 0.00	2:02 pm 3/2/2.			
	C	heckli	st (generated in correspo	ndence with	the manufacturer)				
ID	Component		Method of Measure	ethod of Measure		Pre	Post		
1.1	UUT		Visual	Lim	Limited yielding per AC156		U		
1.2	Battery		 Measure voltage betwe positive and negative out terminals using DMM Verify current flow with re load connected between po and negative output termine 	put esistive ositive	Verify Flow	U	0		
			Witness Si	ignatures					
Position			Printed Name		Signature	Dat	e		
DCL Lab Witness Nastya Vy		Vastya Veyngaan	a All	T	3/12/	US			
Man	ufacturer	Rep.	larener 1 9400	/kans/ b	Same	az/ml	27		

Figure 4. UUT-01 Functionality Check Description.

	Fu	nctio	nal Checklist				())	DCL	
Project Number:			08826-2401	08826-2401 Project Name:		SENS 8Z OSP			
U	JUT:	-	UUT-02	M	odel:	8R-A1-LA-4B	4B2-C0A-1		
	e-Shake Date & Time: 8:27am 3/12/05		Pos Date	-Shake & Time:	11:03 am	3112/25			
	С	hecklis	st (generated in correspo	ondenc	e with th	ne manufacturer)			
ID	ID Component		Method of Measure	Nethod of Measure		Pass Criteria	Pre	Post	
1.1	UU	т	Visual	Visual Limited yielding per AC156		V	C		
1.2	Battery		 Measure voltage betw positive and negative ou terminals using DMM Verify current flow with r load connected between p and negative output term 	tput 1 esistive ositive		Verify Flow	V	\vee	
			Witness S	Signatu	res				
Position Printed N			Printed Name		, Şigi	nature	Dat	е	
DCL Lab Witness		ss /	Vastga Vignaera	a q	the	2	31121	125	
Man	ufacturer R	ep.	loromy 9 5mm	1	mand	lan	at/17/	2-	

Figure 5. UUT-02 Functionality Check Description.

	Fu	inctio	nal Checklist				((∞))	DCL	
Project Number:			08826-2401	Project Name:		SENS 8Z OSP			
ι	JUT:		UUT-03	Mod	del:	8R-C1-0A-11	111-00A-1		
Pre-Shake Date & Time: 8:15am		5am 3112125	Post-Shake Date & Time: 9:5		9:58 am 3/12/25		125		
	c	Checkli	st (generated in correspo	ondence	with tl	he manufacturer)			
ID	Comp	onent	Method of Measure			Pass Criteria	Pre	Post	
1.1	U	UUT Visual		Limited yielding per AC156		V	U		
1.2	Bat	1. Measure voltage betwee positive and negative out terminals using DMM Battery 2. Verify current flow with re load connected between po and negative output terminals		tput I esistive ositive		Verify Flow	V	V	
			Witness S	ignature	s				
Position Print		Printed Name	Signature		nature	Date			
DC	L Lab Witn	ess	Vastya Veynaerou	a C	Jb	P	31/2	125	
Man	nufacturer	Rep.	Veremy J. Snow	here	w/A	Sim	13/12/	25	

Figure 6. UUT-03 Functionality Check Description.

4.3 Seismic Simulation Test Setup

4.3.1 Triaxial Testing Requirements

A triaxial test was performed in one stage with the two principal horizontal axes and the vertical axis of each UUT simultaneously tested.

4.3.2 Weighing

Each UUT was weighed prior to performing the seismic simulation test.

4.3.3 Mounting

Each UUT was mounted on the shake table in a manner that simulated the intended service mounting in accordance with Section 4.5.2 of AC156.

4.3.4 Interface Connections

UUT-01 was rigidly mounted to the shake table interface plate using (4) $\frac{1}{2}$ " Grade 8 bolts and flat washers. The bolts were spaced 10 5/8" apart in x-direction measured on-center and 31 5/8" apart in y-direction measured on-center.

UUT-02 was rigidly mounted to the shake table interface plate using (6) $\frac{1}{2}$ " Grade 8 bolts and flat washers. The bolts were spaced 10 5/8" apart in x-direction measured on-center and 31 5/8" and 27 $\frac{1}{2}$ " apart in y-direction measured on-center.

UUT-03 was rigidly mounted to the shake table interface plate using (4) ½" Grade 8 bolts and flat washers. The bolts were spaced 10 5/8" apart in x-direction measured on-center and 31 5/8" apart in y-direction measured on-center.

The unit attachments are shown in Figures 7. Additional photographs are provided in Appendix C.

Figure 7. UUT-01 attachment to shale table interface plate (UUT-02 and UUT-03 were attached in identical manner).

4.3.5 Monitoring

Two reference control accelerometers were mounted on the shake table at locations near the base of each UUT setup. An accelerometer was mounted to the top of each unit to determine the response of each UUT associated with its structural fundamental frequencies.

4.4 Resonance Frequency Search

A low-level amplitude (approximately 0.1 g peak input) single-axis sinusoidal sweep from 1.3 to 33.3 Hz was performed in each orthogonal UUT axis to determine resonant frequencies of the system. The sweep rate was two octaves per minute.

4.5 Multi-frequency Seismic Simulation Tests

Each UUT was subjected to 30-second duration triaxial multi-frequency random motions which were amplitude-controlled in one-sixth octave bandwidths spaced over the frequency range of 1.3 to 33.3 Hz. Each unit was subjected to an AC156 level test at Sds 2.00 g with

z/h=1.0 and Sds 2.50 g with z/h=0.0. The 5% damped AC156-specified RRS and Test Response Spectrum (TRS) were plotted from the recorded motions.

4.6 Post-Test Inspection

Each UUT was visually examined, and the results documented upon completion of the multifrequency seismic simulation tests to determine whether the UUTs had adequate seismic capacity and whether the structural integrity of the component attachment and forceresisting systems were maintained.

4.7 Post-Test Functional Compliance Verification

Functionality requirements were performed on each UUT at the test laboratory by the SENS technical representative to verify that the UUTs satisfied the functional requirements with equivalent results to those of the pre-test functional compliance testing.

5 Testing Facility

5.1 Test Facility Location

The units were tested at Dynamic Certification Laboratories (DCL) in Sparks, Nevada and testing was supervised by trained DCL staff. DCL is accredited as complying with ISO/IEC Standard 17025 by the International Accreditation Service. The scope of DCL's accreditation includes ICC-ES AC156.

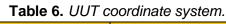
5.2 List of Observers Present for Functionality Testing

A listing of representatives and witnesses present for the pre- and post-test functionality checks is provided in Table 5.

Name	Affiliation	Position					
Nastya Veyngerova	DCL	Seismic Test Engineer					
Sam Chambers	SENS	Mechanical Engineering Manager					
Jeremy Show	SENS	Manufacturer Representative					

 Table 5. List of witnesses with their affiliations during seismic qualification testing.

6 Testing Equipment Description


6.1 Shake Table

The seismic evaluation tests described in this report were conducted on DCL's triaxial shake table in Sparks, Nevada. Manufactured by MTS Systems of Minneapolis, Minnesota, the table is approximately 7 feet in diameter, with an approximate payload capacity of 10,000 pounds.

6.2 Test Coordinate System

Reference Table 6 and Figure 8, 9 and 10 for the relationship between UUT orientation and assigned test coordinates.

Table 6. UUT coordinate system.		
UUT Direction	Test Coordinate	
Longitudinal	Х	
Transverse	Y	
Vertical	7	

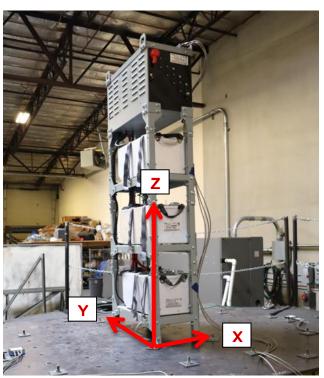


Figure 8. UUT-01 coordinate system.

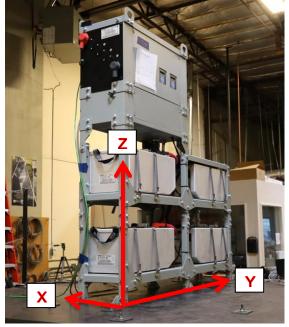


Figure 9. UUT-02 coordinate system.

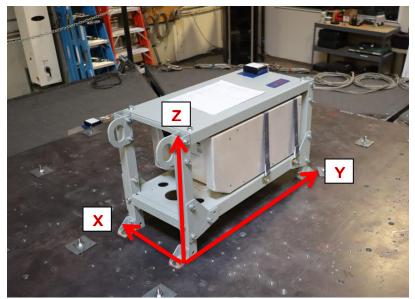


Figure 10. UUT-03 coordinate system.

6.3 Instrumentation

Data acquisition was performed at DCL using a NI SCXI-1520 8-Channel Universal Strain Gage Input module along with a NI SCXI-1314T Bridge Sensor Terminal Block. Triaxial accelerometers were placed on the UUTs, shake table and fixture to monitor the test response. Locations were decided in consultations between the manufacturer and the testing lab personnel. DCL instruments were calibrated in accordance with DCL's quality assurance program which complies with the requirements of ISO/IEC 17025. A summary of the instrumentation used for the tests is provided in Table 7.

ID	Direction	Model	Serial Number	Location	Last Calibration	Calibration Due
ACC1	XYZ	ADXL-325	02	Shake Table	12/21/23	12/21/25
ACC2	XYZ	ADXL-325	04	Shake Table	12/21/23	12/21/25
ACC3	XYZ	ADXL-326	88	Top Corner of UUT-01/-02/-03	5/8/23	5/28/25

Table 7. Specimen instrumentation used in seismic evaluation.

7 Results of Test Data

7.1 Results of Pre- and Post-Test Structural Integrity and Functionality Requirements

7.1.1 Pre-Test

DCL staff verified that each UUT was in good physical condition. Functionality requirements and tests were performed at the test laboratory by the designated manufacturer's technical representative as outlined in Section 4.2. The units passed all pre-test checks.

7.1.2 Post-Test

Each UUT was visually inspected, and it was determined that the structural integrity of the component attachment system and force-resisting system was maintained.

Each unit was working, and it was verified that they satisfied the functional requirements with equivalent results to that of the pre-test functionality checks.

7.1.3 Design Changes

No design changes to the test units were implemented.

7.1.4 Resonance Search Results

Each test unit was subjected to the resonance search tests as described in Section 4.4. The transmissibility plots used to identify the fundamental frequencies of vibration of each test setup are shown in Appendix D. Table 8 shows a summary of the results.

Unit	ACCX (vs ACC1)	Lowest Resonant Frequency (Hz)			
Unit	ACCA (VS ACCI)	X (Longitudinal)	Y (Lateral)	Z (Vertical)	
UUT-01	ACC3	12.50	14.75	33.3<	
UUT-02	ACC3	10.75	12.75	33.3<	
UUT-03	ACC3	33.3<	33.3<	33.3<	

Table 8.	Calculated	natural	frequencies.
----------	------------	---------	--------------

8 Shake Table Output Signal for Seismic Certification

8.1 Obtained Signal Strength

Obtained TRS output signal intensities equaled or exceeded the target input RRS for the seismic certification spectra parameters previously outlined in Table 4. The spectral response plots and time histories for the UUTs in each of the three principal axes are shown in Appendix E.

8.2 Coherence of Input Motions

For the triaxial tests conducted, the table command acceleration in each of the three principal axes was phase incoherent, as shown the plots in Appendix F.

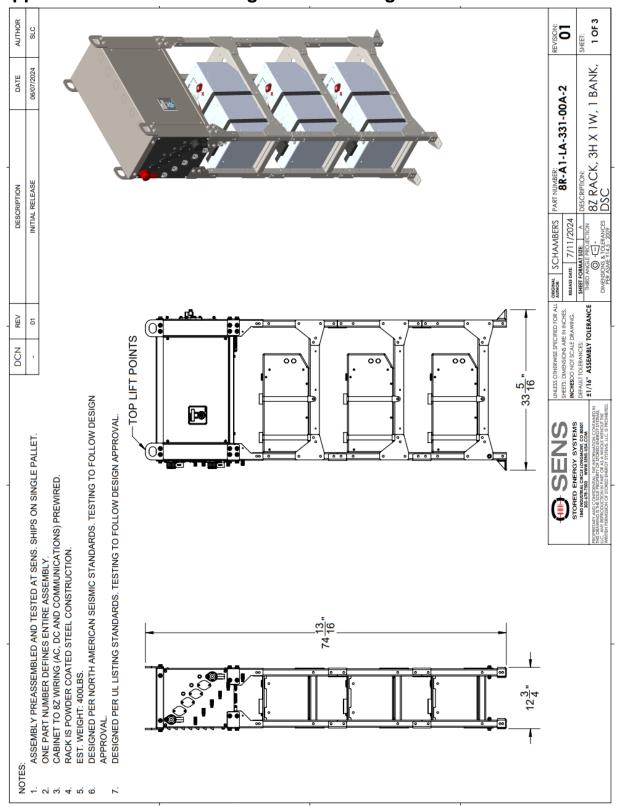
9 Test Results and Conclusions

The units included in this report were seismically tested with the following noted:

- In accordance with the functional performance criteria, the units were deemed functional before and after the seismic certification testing (reference Section 7.1)
- The input histories and shake table output met the ICC-ES AC-156 requirements for intensity, strong motion duration, and statistical independence of the components of motion
- The RRS targeted acceleration values were used to develop input signals for the X-, Y-, and Z- components for certification tests
- The certification testing of each UUT covers the following:
 - Roof level installation to installation at grade
- The TRS met or exceeded the target RRS for the frequency range of interest. The configurations in Table 9 were certified to the levels specified therein.

UUTs	Installation	S _{DS} , g	z/h	Compliance Status
UUT-01	Rigid Base Mounted	2.00	1.0	
UUT-02	Rigid Base Mounted			Complies with AC156
UUT-03	Rigid Base Mounted	2.50	0.0	

Table 9. Compliance status of shake tested configurations.


The supporting test documentation listed below follows this page in the indicated sequence:

Appendix A. Unit Drawings and Mounting Details
Appendix B. Listing of Subcomponents
Appendix C. Photographs of Units Under Test
Appendix D. Resonance Search Test Transmissibility Plots
Appendix E. Seismic Simulation Test Response Spectra and Time History Plots
Appendix F. Coherence Plots
Appendix G. Testing Laboratory Certificate of Accreditation

10 References

ASCE/SEI 7-16 (2016), *Minimum Design Loads for Buildings and Other Structures*, American Society of Civil Engineers, Reston, VA.

International Code Council Evaluation Service Inc. (ICC-ES), (2019): *AC156: Acceptance Criteria for Seismic certification by Shake-Table Testing of Nonstructural Components and Systems*, ICC-ES, Whittier, CA.

Appendix A Unit Drawings and Mounting Details

Figure A.2. UUT-02 drawing.

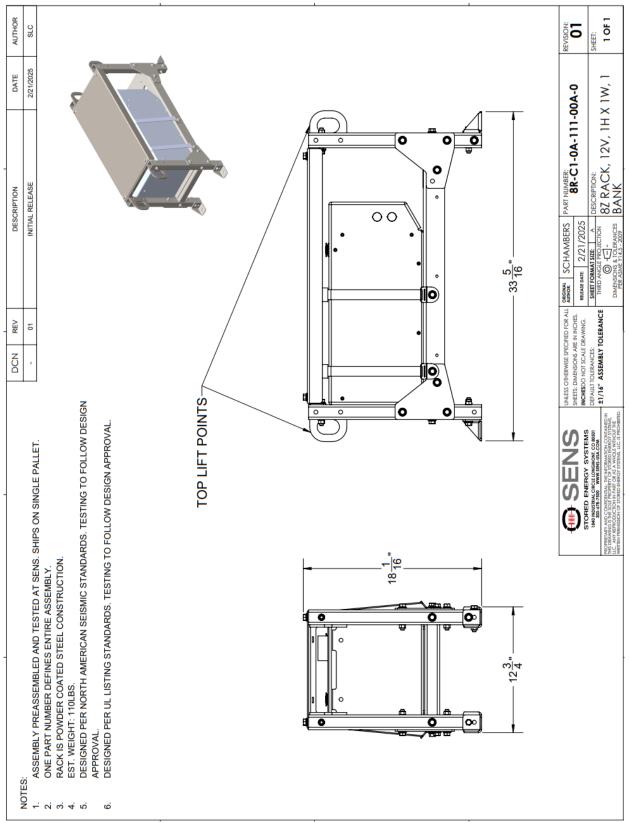


Figure A.3. UUT-03 drawing.

Appendix B Listing of Subcomponents

	able B.1. Subcompone	Batteries	1, 001 02 an		
Model Number	Description	Manufacturer	Material	Weight [lb.]	Unit
8Z-12-B-15- A-1-1-OM	LER or Stationary	Stored Energy	Nickel, Zinc, Plastic,	50	UUT-03
8Z-24-B-15- A-1-1-OM	Applications	Systems	Carbon Steel	89	UUT-01, UUT-02
		Diodes			
209706	ASSEMBLY, BLOCKING DIODES, BBS-4800	Stored Energy Systems	Silicon, Aluminum	45	UUT-02
	Ci	rcuit Boards			
287757	PCA, MG2, ACCY, CAN, DISP, 5 RLY, ETH, SYS, S/W			<1	UUT-01, UUT-02
207056	PCA, DIODE ISOLATOR, 80A/120A	Stored Energy	PCB,	1.0	UUT-02
285750	PCA, MG2, PWR/CTRL, 12V/24V, 15A, SC TRM, S/W	Systems	Copper	1.5	UUT-01, UUT-02
204288	PCA, 8Z LED BOARD			<1	UUT-01, UUT-02
Breakers					
702939	BRKR, 1 POLE, 10A,125VDC, HYDMAG	Carling	Plastic,	<1	UUT-02
702940	BRKR, 1 POLE, 80A,125VDC, HYDMAG	Technologies	Copper	<1	UUT-02

Table B.1. Subcomponents list for UUT-01, UUT-02 and UUT-03.

Appendix C Photographs of Units Under Test

Figure C.1. UUT-01 overall view, pre-test.

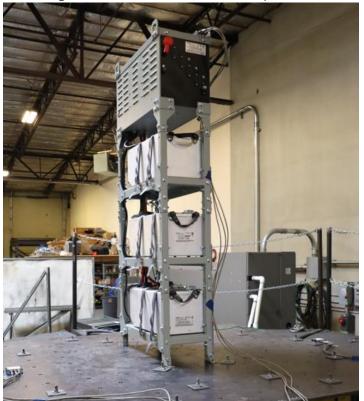


Figure C.2. UUT-01 overall view, post-test.

Figure C.3. UUT-02 overall view, pre-test.

Figure C.4. UUT-02 overall view, post-test.



Figure C.5. UUT-03 overall view, pre-test.

Figure C.6. UUT-03 overall view, post-test.

Figure C.7. UUT-01 accelerometer ACC1, ACC2 and ACC3 locations.

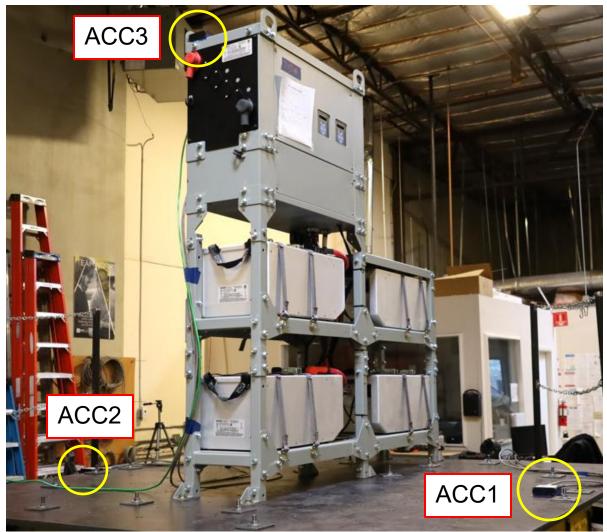


Figure C.8. UUT-02 accelerometer ACC1, ACC2 and ACC3 locations.

Figure C.9. UUT-03 accelerometer ACC1, ACC2 and ACC3 locations.

Appendix D Resonance Search Test Transmissibility Plots

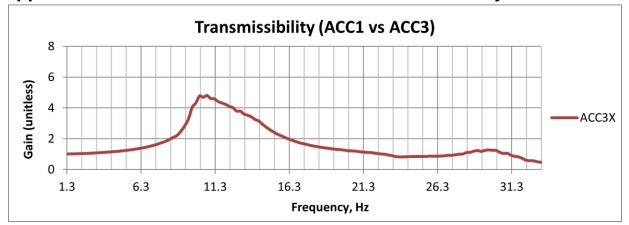


Figure D.1. UUT-01 resonance frequency in the X-direction (ACC1 vs ACC3).

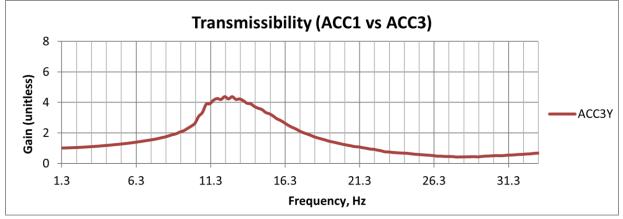


Figure D.2. UUT-01 resonance frequency in the Y-direction (ACC1 vs ACC3).

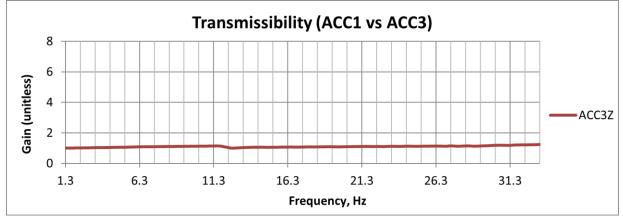


Figure D.3. UUT-01 resonance frequency in the Z-direction (ACC1 vs ACC3).

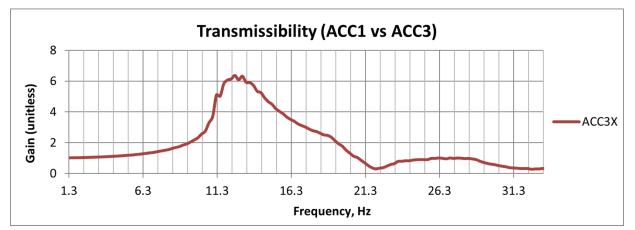


Figure D.4. UUT-02 resonance frequency in the X-direction (ACC1 vs ACC3).

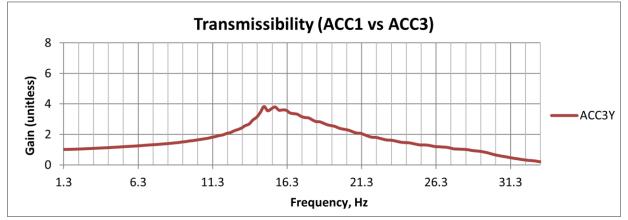


Figure D.5. UUT-02 resonance frequency in the Y-direction (ACC1 vs ACC3).

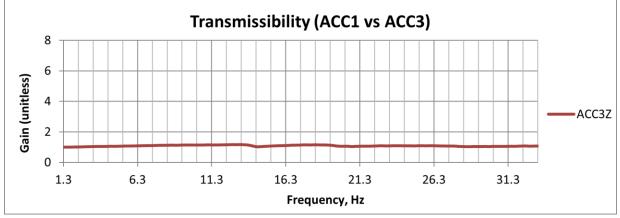


Figure D.6. UUT-02 resonance frequency in the Z-direction (ACC1 vs ACC3).

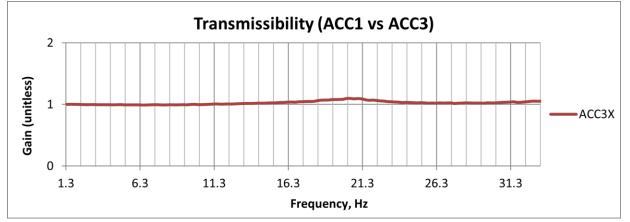


Figure D.7. UUT-03 resonance frequency in the X-direction (ACC1 vs ACC3).

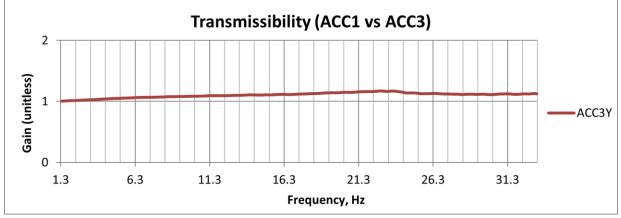


Figure D.8. UUT-03 resonance frequency in the Y-direction (ACC1 vs ACC3).

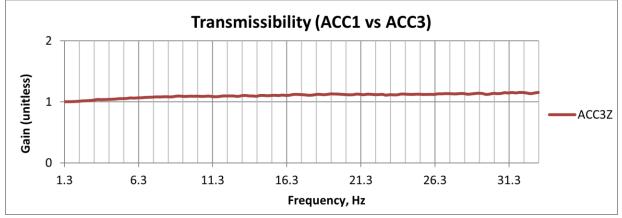


Figure D.9. UUT-03 resonance frequency in the Z-direction (ACC1 vs ACC3).

Appendix ESeismic Simulation Test Response Spectra and TimeHistory Plots

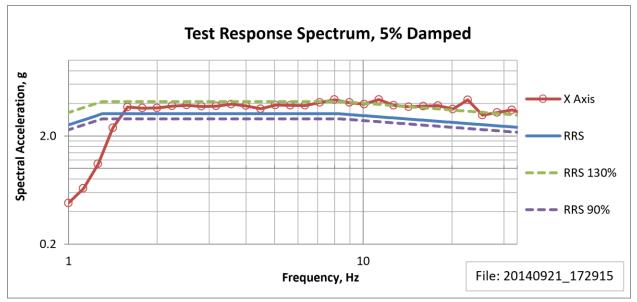


Figure E.1. Response spectra for UUT-01; X-direction.

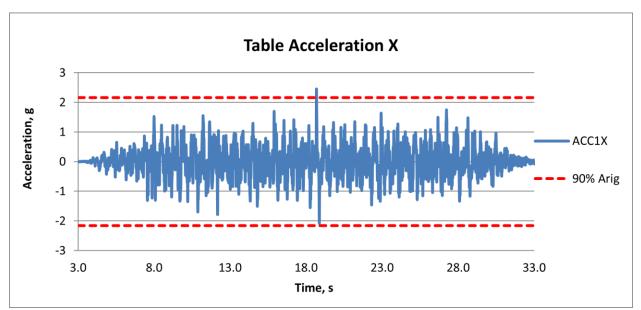


Figure E.2. Shake table time history for UUT-01; X-direction.

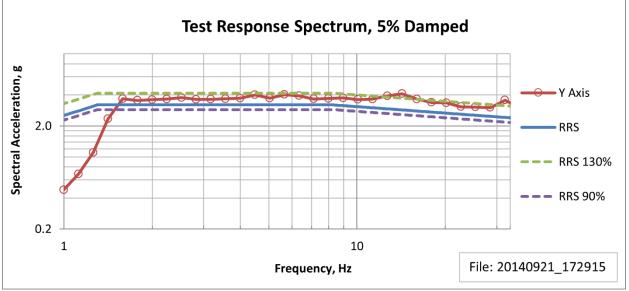


Figure E.3. Response spectra for UUT-01; Y-direction.

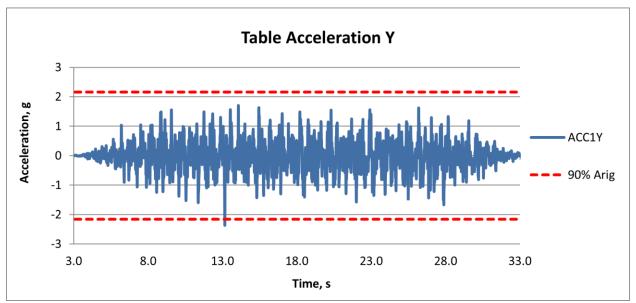


Figure E.4. Shake table time history for UUT-01; Y-direction.

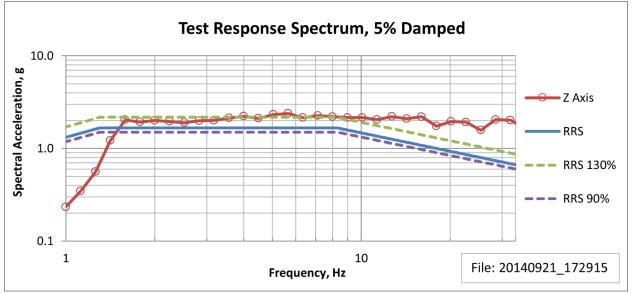


Figure E.5. Response spectra for UUT-01; Z-direction.

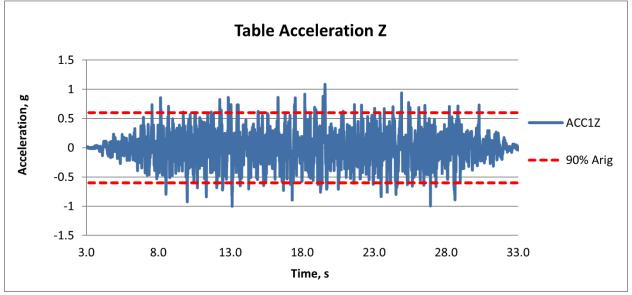


Figure E.6. Shake table time history for UUT-01; Z-direction.

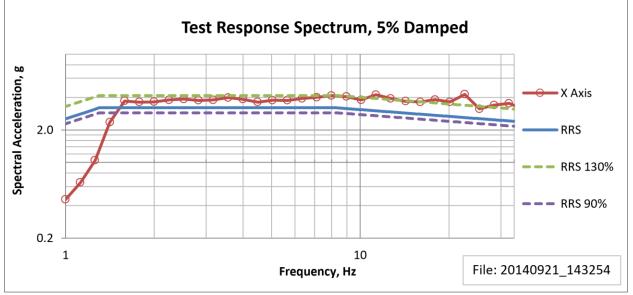


Figure E.7. Response spectra for UUT-02; X-direction.

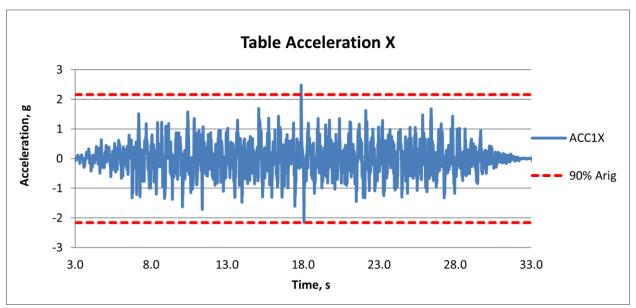


Figure E.8. Shake table time history for UUT-02; X-direction.

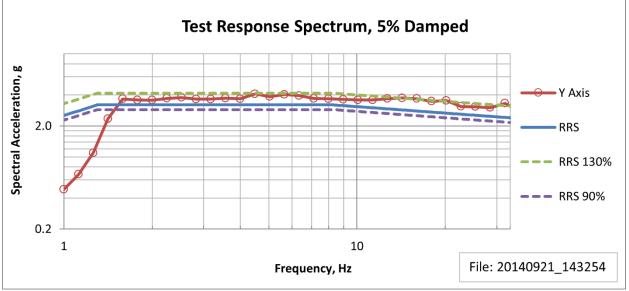


Figure E.9. Response spectra for UUT-02; Y-direction.

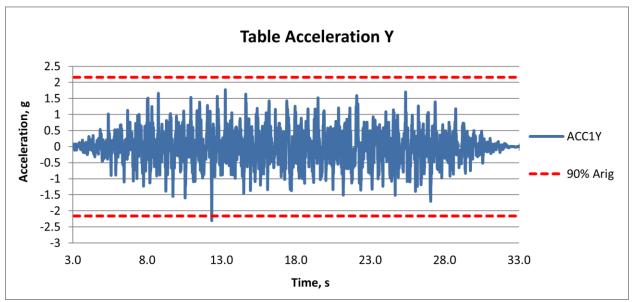


Figure E.10. Shake table time history for UUT-02; Y-direction.

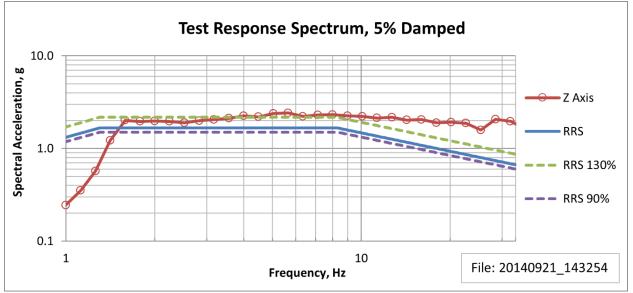


Figure E.11. Response spectra for UUT-02; Z-direction.

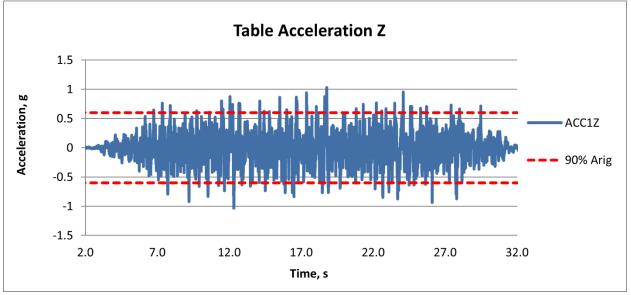


Figure E.12. Shake table time history for UUT-02; Z-direction.

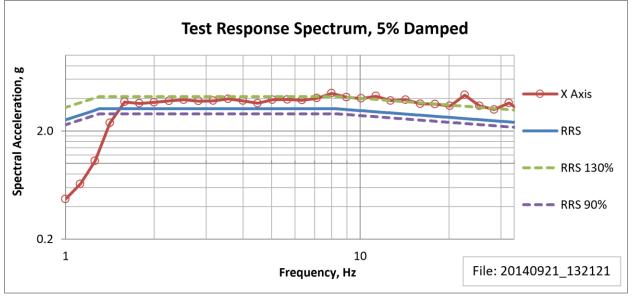


Figure E.13. Response spectra for UUT-03; X-direction.

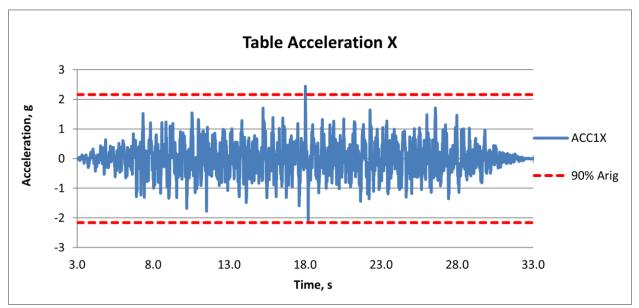


Figure E.14. Shake table time history for UUT-03; X-direction.

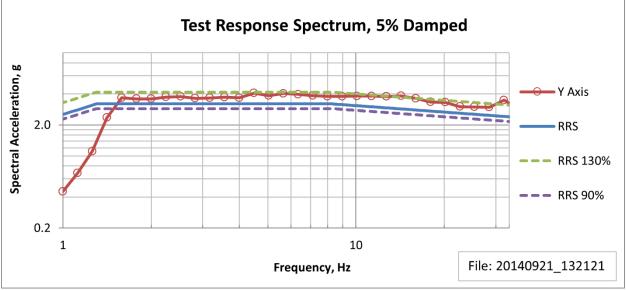


Figure E.15. Response spectra for UUT-03; Y-direction.

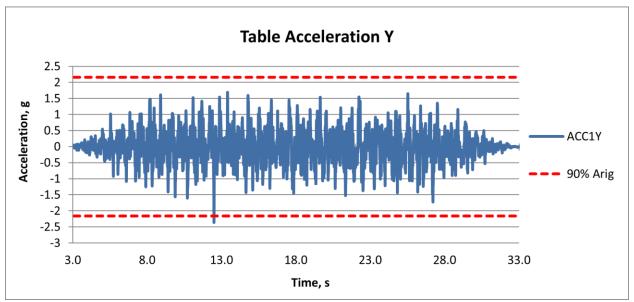


Figure E.16. Shake table time history for UUT-03; Y-direction.

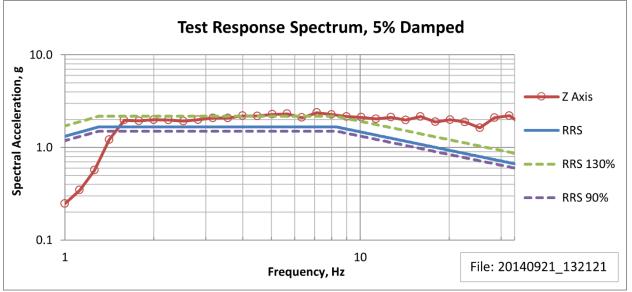


Figure E.17. Response spectra for UUT-03; Z-direction.

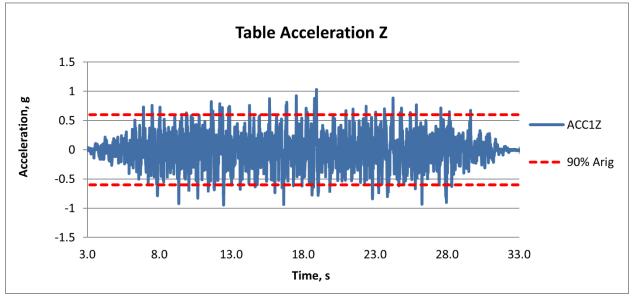


Figure E.18. Shake table time history for UUT-03; Z-direction.

Appendix F Coherence Plots

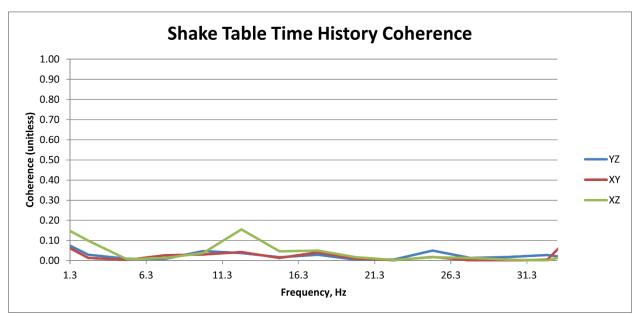


Figure F.1. Shake table time history coherence for UUT-01 shake.

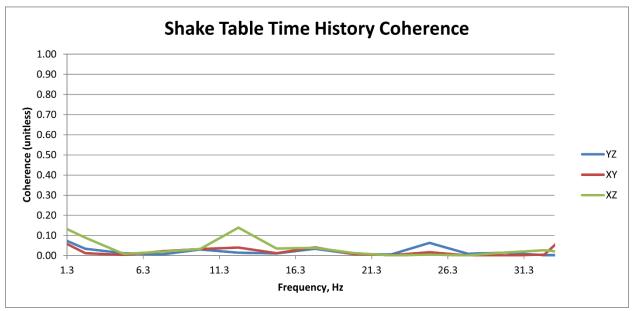


Figure F.2. Shake table time history coherence for UUT-02 shake.

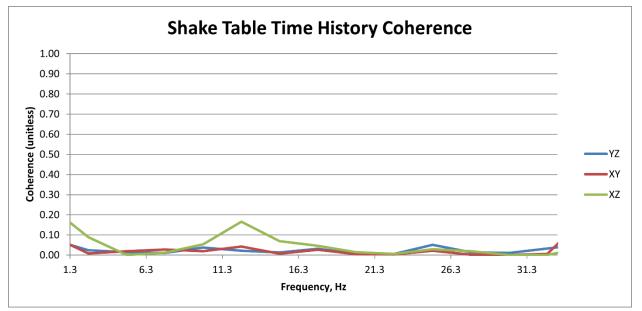


Figure F.3. Shake table time history coherence for UUT-03 shake.

Appendix G **Testing Laboratory Certificate of Accreditation**

CERTIFICATE OF ACCREDITATION

This is to attest that DCL LABS, LLC 1315 GREG STREET, SUITE 109

SPARKS, NEVADA, 89431, U.S.A.

Testing Laboratory TL-461

has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2017, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation.

Effective Date July 23, 2020

President

Visit www.iasonline.org for current accreditation information.

Inter	national Accredi	CREDITATION tation Service, Inc. rnia 92821, U.S.A. www.iasonline.org	
	DCL LAB www.shake		
Contact Name Kelly Laplace		Contact Phone +1 775 358-5	
Accredited to ISO/IEC 17	7025:2017	Effective Date July 23, 2	
Structural			
ANSI/FM Approvals 1950	American National Stan Conduit	dard for Seismic Sway Braces For Pipe, Tubing	
ANSI/ASHRAE Standard 171	Method of Testing for R	ting Seismic and Wind Restraints	
ICC-ES AC156	Seismic certification by shake-table testing of nonstructural componer (section 6.0 - seismic certification test procedure)		
TELCORDIA GR-63-CORE	test procedure)	e test methods (excluding Section 5.4.1.4 stat ation test procedure (excluding Alternative Test	

TL-461 DCL LABS, LLC

Page 2 of 2

End of Report